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Defibrillation by a strong electric shock remains the only known effective way of 

terminating ventricular fibrillation and thus preventing sudden cardiac death. External 

defibrillators have long been used as standard therapy, and implantable cardioverter–

defibrillators (ICDs), based on mature foundational technology that evolved from 

antibradycardia pacing, have also been demonstrated to be an effective, life-saving 

technology. Large, well-controlled prospective ICD therapy trials such as AVID, MADIT-I 

and -II, and MUST have revolutionized the concept of sudden cardiac death prophylaxis and 

have proven the efficacy of ICDs for both secondary and primary prevention of sudden 

cardiac death [1]. These studies have led to the rapid growth of patient populations for 

whom ICDs are indicated, with over 110,000 devices implanted annually in the USA alone.

As a result, increasingly diverse populations of patients have been undergoing ICD 

implantation. In 1989, the first use of ICDs in young patients was reported [2]. Since then, 

ICD therapy has become increasingly important as a treatment approach in the pediatric 

population [3], with the mean age at implant decreasing significantly (from 13.6 to 12.2 

years), and the percentage of patients younger than 5 years of age receiving an ICD 

increasing to above 10% [4]. The clinical outcome of ICD therapy in pediatric patients and 

adults with congenital heart disease has been evaluated by large multi-center studies, which 

included more than 200 children [5,6].

Despite the increased ICD implantation rate and the successes in ICD therapy, children and 

patients of small body size, as well as patients with congenital heart disease, are poorly 

served by current ICD technology. In these populations, the procedural approach and site of 

implantation, therapeutic algorithms, and early and long-term complications are different 

from those in adults, and the optimal ICD implantation technique has not yet been 

established. Furthermore, transvenous approaches to lead implantation presents a problem 

because of the small venous system [7] – there are no specific electrodes for small vessel 
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diameters – and because of the frequent congenitally altered heart anatomy. As a result, 

transvenous approaches are associated with an increased risk of venous thrombosis. 

Nontransvenous ICD systems used currently in clinical practice in younger patients and in 

those with smaller body surface area, intracardiac shunts, and concurrent thoracotomy 

surgery or affection of tricuspid valve include pericardial and subcutaneous coils. In 

addition, existing ICD devices are not adapted to the pediatric patient’s small body surface 

and weight, frequently requiring abdominal implantation of the power generator. Early 

physical activity and impaired sterile conditions lead to more frequent procedural 

complications in these patient populations. Inappropriate discharges, lead-related 

complications and generator anomalies are the most common adverse events occurring 

during follow-up; Lewandowski et al. reported a 21% rate of complications requiring 

surgical intervention [

The variability and structural complexity of pediatric hearts, particularly those with 

congenital heart defects, make ICD device implantation and management a highly 

individualized art. There is currently no reliable, personalized way of predicting which ICD 

configuration would have the lowest defibrillation and/or cardioversion thresholds in such a 

patient. A wide variety of innovative approaches to ICD implantation have been 

demonstrated to be clinically feasible in children and congenital heart patients. These 

approaches have generally utilized ‘off-the-shelf’ technology in untested ways. Little data 

are available to guide the specific application of defibrillation strategies in these patient 

groups. Clinical studies in these patient groups to determine appropriate defibrillation 

parameters are difficult to design and complete due to ethical and practical considerations. 

The clinical data indicate that because ICD technology is deployed into clinical situations 

for which it has been neither designed nor extensively validated by clinical experience, there 

is now a pressing need for alternative approaches to technology development and therapy 

planning in the field of cardiac defibrillation, approaches that are both flexible and 

incorporate our increased knowledge of the mechanisms by which an electric shock 

defibrillates the heart.

By marrying clinical MRI with sophisticated computer analysis, the paper by Rantner et al. 

has now provided proof of concept that it is possible to take the guesswork out of the ICD 

implantation process in pediatric and congenital heart disease patients [9]. The researchers 

used an MRI-based patient-specific 3D heart–torso model that takes into account the child’s 

unique heart anatomy, and determined the optimal locations (in terms of minimum shock 

energy) for both leads and the power generator before the device is implanted.

In the past, finite element modeling has been used by numerous investigators to model 

human defibrillation. Specifically, models of the human thorax have been employed to 

predict the intensity of an electrical field delivered by a defibrillator device, as well as the 

amount of current that reaches the heart during this process. Attempts to construct heart–

torso models from MRI data sets have also been made previously, but only for patients with 

structurally normal hearts. Such models have been employed in the study of defibrillation 

[10–13], as well as for other uses [14]. However, all of these prior models were limited to 

predicting only the static thoracic electrical field induced by the electric shock, and relied on 

inference to predict the actual electrophysiological effect of this field on the fibrillating 
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heart. To adequately describe this response, it is necessary to include in these models a 

biophysically accurate, mechanistic representation of the interaction of the defibrillation 

electric field with the myocardium.

Studies have demonstrated that the cells in the heart respond to the electric current delivered 

by the defibrillator device in a strongly nonlinear fashion, by generating concurrent regions 

of positive and negative membrane polarization throughout cardiac tissue [15,16]. This 

effect is termed ‘virtual electrode polarization’ (VEP) and represents the essence of the 

interaction between cardiac tissue and the applied electric field. VEP has been documented 

in numerous experimental studies and is supported by computer simulations [17–19]. 

Furthermore, research has shown that in addition to the nonlinear membrane response, 

cardiac tissue structure, particularly fiber architecture, plays an important role in the 

generation of VEP and its shape, location, polarity and intensity [20]. The distribution of 

VEP throughout the heart in response to the shock determines whether existing wave fronts 

in the heart are terminated by the shock, and whether new wave fronts are generated that 

could reinitiate arrhythmia. Clearly, accurate prediction of the generation of VEP and 

subsequent propagation of postshock activation is necessary for the accurate prediction of 

shock outcome, and requires explicit representation of both the electrophysio logical 

properties of the myocardium, as well as the myocardial geometry and fiber architecture.

The study by Rantner et al. presented the first electrophysiological, active multiscale heart–

torso model that accounted for the aforementioned interactions between an applied electric 

field and the cells in the heart [9]. Importantly, the study developed a new image-processing 

pipeline for building patient-specific heart–torso models from low-resolution clinical MRIs, 

which was applied, in a proof of principle, to a pediatric patient with congenital heart 

disease. Using the pediatric patient heart–torso model constructed with this image-

processing pipeline, the study used simulations of the defibrillation process to determine the 

shock outcome for different ICD configurations. Ventricular fibrillation was induced in the 

model heart, and defibrillation shocks were applied from 11 ICD configurations to 

determine the outcomes of shocks and the defibrillation thresholds, the minimum amount of 

energy that successfully defibrillated the heart with shocks from a given ICD configuration. 

Two configurations with epicardial leads resulted in the lowest defibrillation thresholds 

overall and were, thus, considered optimal. The study also demonstrated that in order to 

reliably predict defibrillation outcome, the patient-specific heart model needs to accurately 

incorporate the biophysically detailed interaction between the applied shock and the cells of 

the heart. The pipeline and methodology developed in this study presented a novel approach 

to predicting the optimal ICD configurations before device implantation, a tool of particular 

importance, as reviewed above, for pediatric and congenital heart disease patients who have 

contraindications for transvenous lead ICD implantation. The clinical translation of this 

approach could provide a reliable, personalized way of predicting the location of ICD device 

placement in such patient populations.
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“By marrying clinical MRI with sophisticated computer analysis, the paper by Rantner et 

al. has now provided proof of concept that it is possible to take the guesswork out of the 

implantable cardioverter–defibrillator implantation process in pediatric and congenital 

heart disease patients.”
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“Despite the increased implantable cardioverter–defibrillators (ICDs) implantation rate 

and the successes in ICD therapy, children and patients of small body size, as well as 

patients with congenital heart disease, are poorly served by current ICD technology.”
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“There is currently no reliable, personalized way of predicting which implantable 

cardioverter–defibrillator configuration would have the lowest defibrillation and/or 

cardioversion thresholds in such a patient.”
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